29 research outputs found

    A hierarchy of compatibility and comeasurability levels in quantum logics with unique conditional probabilities

    Full text link
    In the quantum mechanical Hilbert space formalism, the probabilistic interpretation is a later ad-hoc add-on, more or less enforced by the experimental evidence, but not motivated by the mathematical model itself. A model involving a clear probabilistic interpretation from the very beginning is provided by the quantum logics with unique conditional probabilities. It includes the projection lattices in von Neumann algebras and here probability conditionalization becomes identical with the state transition of the Lueders - von Neumann measurement process. This motivates the definition of a hierarchy of five compatibility and comeasurability levels in the abstract setting of the quantum logics with unique conditional probabilities. Their meanings are: the absence of quantum interference or influence, the existence of a joint distribution, simultaneous measurability, and the independence of the final state after two successive measurements from the sequential order of these two measurements. A further level means that two elements of the quantum logic (events) belong to the same Boolean subalgebra. In the general case, the five compatibility and comeasurability levels appear to differ, but they all coincide in the common Hilbert space formalism of quantum mechanics, in von Neumann algebras, and in some other cases.Comment: 12 page

    States on pseudo effect algebras and integrals

    Full text link
    We show that every state on an interval pseudo effect algebra EE satisfying some kind of the Riesz Decomposition Properties (RDP) is an integral through a regular Borel probability measure defined on the Borel σ\sigma-algebra of a Choquet simplex KK. In particular, if EE satisfies the strongest type of (RDP), the representing Borel probability measure can be uniquely chosen to have its support in the set of the extreme points of $K.

    Extensions and degenerations of spectral triples

    Full text link
    For a unital C*-algebra A, which is equipped with a spectral triple and an extension T of A by the compacts, we construct a family of spectral triples associated to T and depending on the two positive parameters (s,t). Using Rieffel's notation of quantum Gromov-Hausdorff distance between compact quantum metric spaces it is possible to define a metric on this family of spectral triples, and we show that the distance between a pair of spectral triples varies continuously with respect to the parameters. It turns out that a spectral triple associated to the unitarization of the algebra of compact operators is obtained under the limit - in this metric - for (s,1) -> (0, 1), while the basic spectral triple, associated to A, is obtained from this family under a sort of a dual limiting process for (1, t) -> (1, 0). We show that our constructions will provide families of spectral triples for the unitarized compacts and for the Podles sphere. In the case of the compacts we investigate to which extent our proposed spectral triple satisfies Connes' 7 axioms for noncommutative geometry.Comment: 40 pages. Addedd in ver. 2: Examples for the compacts and the Podle`s sphere plus comments on the relations to matricial quantum metrics. In ver.3 the word "deformations" in the original title has changed to "degenerations" and some illustrative remarks on this aspect are adde

    The Lattice and Simplex Structure of States on Pseudo Effect Algebras

    Full text link
    We study states, measures, and signed measures on pseudo effect algebras with some kind of the Riesz Decomposition Property, (RDP). We show that the set of all Jordan signed measures is always an Abelian Dedekind complete \ell-group. Therefore, the state space of the pseudo effect algebra with (RDP) is either empty or a nonempty Choquet simplex or even a Bauer simplex. This will allow represent states on pseudo effect algebras by standard integrals

    Smearing of Observables and Spectral Measures on Quantum Structures

    Full text link
    An observable on a quantum structure is any σ\sigma-homomorphism of quantum structures from the Borel σ\sigma-algebra of the real line into the quantum structure which is in our case a monotone σ\sigma-complete effect algebras with the Riesz Decomposition Property. We show that every observable is a smearing of a sharp observable which takes values from a Boolean σ\sigma-subalgebra of the effect algebra, and we prove that for every element of the effect algebra there is its spectral measure

    The Expectation Monad in Quantum Foundations

    Get PDF
    The expectation monad is introduced abstractly via two composable adjunctions, but concretely captures measures. It turns out to sit in between known monads: on the one hand the distribution and ultrafilter monad, and on the other hand the continuation monad. This expectation monad is used in two probabilistic analogues of fundamental results of Manes and Gelfand for the ultrafilter monad: algebras of the expectation monad are convex compact Hausdorff spaces, and are dually equivalent to so-called Banach effect algebras. These structures capture states and effects in quantum foundations, and also the duality between them. Moreover, the approach leads to a new re-formulation of Gleason's theorem, expressing that effects on a Hilbert space are free effect modules on projections, obtained via tensoring with the unit interval.Comment: In Proceedings QPL 2011, arXiv:1210.029

    Continuity of the Maximum-Entropy Inference

    Full text link
    We study the inverse problem of inferring the state of a finite-level quantum system from expected values of a fixed set of observables, by maximizing a continuous ranking function. We have proved earlier that the maximum-entropy inference can be a discontinuous map from the convex set of expected values to the convex set of states because the image contains states of reduced support, while this map restricts to a smooth parametrization of a Gibbsian family of fully supported states. Here we prove for arbitrary ranking functions that the inference is continuous up to boundary points. This follows from a continuity condition in terms of the openness of the restricted linear map from states to their expected values. The openness condition shows also that ranking functions with a discontinuous inference are typical. Moreover it shows that the inference is continuous in the restriction to any polytope which implies that a discontinuity belongs to the quantum domain of non-commutative observables and that a geodesic closure of a Gibbsian family equals the set of maximum-entropy states. We discuss eight descriptions of the set of maximum-entropy states with proofs of accuracy and an analysis of deviations.Comment: 34 pages, 1 figur
    corecore